Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
3UH3AR076573-03S2
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity: Understanding Patient Predictors of Response Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS CEDARS-SINAI MEDICAL CENTER SPIEGEL, BRENNAN Los Angeles, LA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Although digital health technologies are now widely available for both therapeutic and monitoring applications, there are wide variations in patient knowledge, attitudes, beliefs, and preferences regarding their uptake and effectiveness. There are also sociodemographic variations in willingness to participate in digital health research studies, both for chronic pain and other common disorders. However, few efforts have systematically examined patient-level predictors of digital health uptake and benefit among diverse individuals who experience chronic pain. This research will employ mixed methods to examine variations in engagement and benefit among diverse participants in a large clinical trial examining the benefits of virtual reality for treatment of chronic lower back pain.

3U24NS113844-02S1
EPPIC-NET DCC Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE PETKOVA, EVA (contact); TROXEL, ANDREA B New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

There is a clear public health imperative to improve the care and outcomes of people who experience severe acute and chronic pain. The Early Phase Pain Investigation Clinical Network (EPPIC-Net) is charged with conducting deep phenotyping and biomarker studies for specific pain conditions – and with conducting high-quality phase II clinical trials to test novel non-opioid pain treatments with academic and industry partners. This research will extend EPPIC-Net’s current portfolio to develop novel and efficient data-analytic methodologies for complex medical data, such as those that are expected to be generated by the clinical trials conducted by EPPIC-Net.

3U24NS113850-03S1
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network - Murray Supplement Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

Key goals of the NIH HEAL Initiative are improving non-opioid pain management and expanding the workforce of clinical researchers working on individualized pain treatments know as pain precision medicine. This award enables an exceptional early career clinician with the opportunity to obtain expertise with high-quality pain-related biomarker assessment methods and biomarker-informed clinical trial design. This research centers on eating-related gastrointestinal functional/motility pain disorders – an understudied area of clinical pain science – and will prepare the clinician to be a future leader in the clinical pain research community.

1R34NS126036-01
Synthesis of peripherally active CB1 agonists as analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS ST. LOUIS COLLEGE OF PHARMACY MAJUMDAR, SUSRUTA (contact); DROR, RON ; GEREAU, ROBERT W St. Louis, MO 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Current medications for chronic pain are largely ineffective and rely heavily on opioids, one contributor to the nation’s opioid crisis. The endocannabinoid system that consists of cannabinoid receptors (CB1R and CB2R) and their endogenous ligands is a natural pathway in the human body and has emerged as an alternative target for developing new pain medications with few side effects. Current molecules that bind to CB1R in the brain and spinal cord have psychoactive side effects, limiting their therapeutic use for treating chronic pain. This study aims to develop new molecules to bind to CB1R tightly and selectively, are metabolically stable, and are also unable to enter the brain.

1R44HD107822-01
A Novel Medical System for Quantitative Diagnosis and Personalized Precision Botulinum Neurotoxin Injection in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD HILLMED, INC. DIAS, NICHOLAS Katy, TX 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Chronic pelvic pain affects social and sexual quality of life in up to 20% of women in the United States. It is often managed with physical therapy approaches, but when these measures fail, injection therapies may be indicated. These include injection of botulinum neurotoxin, which leads to muscle relaxation in the pelvic floor and thus pain relief. However, botulinum neurotoxin has dose-dependent side effects and is expensive. Therefore, a precision injection technique to administer botulinum neurotoxin so that it remains effective while minimizing adverse effects and costs is needed. Hillmed Inc. has developed a technique to assess the pelvic floor and choose the optimal injection site, which has improved treatment outcome in initial analyses. They are now aiming to develop a commercializable, personalized precision injection medical device for botulinum toxin and software package that will enable clinicians to optimize botulinum neurotoxin injection. They will then assess the system’s efficacy in a clinical trial of women with chronic pelvic pain and healthy women.

1R44NS119036-01
Development of a novel analgesic for mixed inflammatory and neuropathic pain states Cross-Cutting Research Small Business Programs NINDS ANABIOS CORPORATION GHETTI, ANDREA San Diego, CA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

As prescription opioid drug abuse and overdose-related deaths continue to skyrocket in the United States, the need for new and more effective non-addictive pain drugs to treat chronic pain remains critical. This research is conducting studies in animal models of a small molecule that has high potential to treat chronic pain conditions associated with neuropathy and/or inflammation. The goal of this project is to conduct dosing and other studies leading up to an animal model study of the potential drug in a toxicology study for 28 days. Results may lead to Investigative New Drug regulatory clearance to begin clinical studies to validate the potential drug’s efficacy and safety.

3U24NS115691-01S1
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T Philadelphia, PA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

A significant gap exists in understanding of the barriers blocking access to specialized care for children of color who experience headaches, as well as to understand and appreciate the impact of undertreatment on a child’s functional ability and quality of life. Long-term, this research aims to understand these barriers to care and test interventions to remedy disparities. As the first step, this project's primary objective is to identify socioeconomic and clinical factors that lead children experiencing headache to seek care in an emergency department in lieu of outpatient neurology care. The results of this research will help to inform efforts to reduce the negative effects of emergency department overuse in this population and guide them to potentially more appropriate outpatient care.

3UH3DA050173-02S1
Optimized Interventions to Prevent Opioid Use Disorder among Adolescents and Young Adults in the Emergency Department New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA UNIVERSITY OF MICHIGAN AT ANN ARBOR WALTON, MAUREEN A Ann Arbor, MI 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

The emergency department is an ideal venue to reach and intervene with adolescents and young adults at risk for opioid misuse, particularly as young adults may disconnect from primary care when transitioning out of care in pediatric settings. This study will evaluate the efficacy of interventions of varying type and intensity to prevent or reduce opioid misuse or opioid use disorder. The research leverages technology that is appealing to youth to facilitate intervention delivery by health coaches. In this study, adolescents and young adults in the emergency department screening positive for opioid use or misuse will be randomly assigned to one of four intervention conditions with outcomes measured at 4, 8, and 12 months. Technology-driven, scalable interventions delivered via health coaches allow for real-time tailoring to the rapidly changing opioid epidemic, with the potential to prevent an increase in opioid misuse among adolescents and young adults.  Black/African American youth are at increased risk for opioid and other substance use, but they often do not participate in research studies. As a result, it is not known how well prevention interventions work with Black/African American people. This supplement will focus on increasing participant diversity and inclusion by recruiting additional Black/African American participants for this ongoing randomized controlled study of technology-driven prevention interventions.

3U19AR076725-01S2
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH SOWA, GWENDOLYN A Pittsburgh, PA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

Identifying optimal chronic low back pain treatments on a patient-specific basis is an important and unresolved challenge. Tailoring interventions according to patient movement characteristics is one option. This research is characterizing patients based on spinal motion during functional tasks and daily activities and will use artificial intelligence to objectively characterize motions of the spine during both clinical assessments and day-to-day life. During clinical assessments, participants will be asked to perform functional tasks while wearing motion sensors. Data collected from the sensors will be used to identify tasks of interest, such as activities of daily living and aberrant/painful motions. An artificial intelligence approach will then interpret data collected continuously during assessment in patients’ homes over a 7-day testing period. Ultimately, this data could be used to help clinicians tailor treatments that are responsive to a patient’s real-world functional impairments.

1UG3NS123958-01
Development of a CCKBR-targeting scFv as Therapy for Chronic Pain Patients Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR WESTLUND-HIGH, KARIN N (contact); ALLES, SASCHA R Albuquerque, NM 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Cholecystokinin B receptor (CCKBR) is a molecule found in the brain that helps regulate anxiety and depression but also influences the development of tolerance to opioids. CCKBR levels are also increased in models of nerve injury-induced (neuropathic) pain. Therefore, targeting CCKBR may offer a new approach to treating neuropathic pain and the associated anxiety and depression. Researchers have developed mouse antibodies that can inactivate CCKBR. However, to be usable in humans without causing an immune response, these antibodies need to be modified to include more human sequences. This project will use a fragment of the CCKBR antibody, modify it with the addition of human antibody sequences, and then select the clones that bind most strongly and specifically to human CCKBR. These will then be tested in cell and animal models of neuropathic pain to identify the most promising candidates for further evaluation in humans.

1R43NS120410-01A1
Optimization of a Gene Therapy for Chronic Pain in Human DRGs Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA (contact); ALEMAN GUILLEN, FERNANDO La Jolla, CA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

To avoid the reliance on opioids for treatment of pain, researchers are investigating alternative approaches to disrupt the transmission of pain signals by specialized neurons in the body, such as dorsal root ganglion neurons in the spinal cord. Molecules called voltage-gated sodium channels that are located in the membranes of dorsal root ganglion neurons are essential for transmission of the pain signals. People carrying a specific variant of these channels, NaV1.7, are insensitive to pain; therefore, strategies to block this particular channel might help in the development of non-addictive pain treatment approaches. Navega Therapeutics is developing an innovative gene therapy that specifically targets NaV1.7. Using studies in human cell lines, they will identify the best designs to then test this gene therapy approach in human dorsal root ganglion neurons.

3UH3DA050251-03S1
The Role of Family Functioning and Race/Ethnicity on the Efficacy of an Opioid Misuse Prevention Videogame Intervention for Adolescents New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA YALE UNIVERSITY FIELLIN, LYNN ELIZABETH New Haven, CT 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Most opioid misuse begins during adolescence and young adulthood. Adolescence is the best time for prevention interventions in settings like school-based health centers (HCs), yet few programs focus on preventing initiation of opioid misuse. This study harnesses the power of video game interventions and incorporates components of effective substance use prevention programs to develop an evidence-informed intervention to prevent the initiation of opioid misuse in adolescents. In partnership with the national School-Based Health Alliance (SBHA), researchers will develop and test a new video game intervention, PlaySmart. It will build on our previous video game intervention that has demonstrated efficacy in improving attitudes and knowledge related to risk behaviors. The study will evaluate the game in a randomized controlled trial in 10 school-based HCs and examine strategies for implementing PlaySmart in school-based HCs nationally. This research has considerable potential for wide implementation, reach, and impact on high-risk adolescents through school-based HCs.

3UH3CA261067-02S1
Optimizing the use of ketamine to reduce chronic postsurgical pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCI NEW YORK UNIVERSITY SCHOOL OF MEDICINE WANG, JING (contact); DOAN, LISA New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Social determinants of heath may affect breast cancer diagnosis and disease staging at time of mastectomy. It is unclear if socioeconomic factors such as annual income, marital status/single parent household, number of children, distance from the hospital, and other life stressors facing individuals from under-resourced populations affect development of postmastectomy pain syndrome or response to the drug ketamine. This research will analyze these factors toward mitigating post-mastectomy pain. This analysis will also serve as the basis for further research to define pathways that minimize health disparities plays in the development of chronic, post-surgical pain. The ultimate goal of this research is to normalize risk for chronic pain after breast surgery.

 

3UH3DA050174-02S2
Preventing Substance Misuse and Substance Use Disorder by Examining Service Provider Interactions, Discrimination, Ethnic Identity, Sexual Orientation Identity, and Housing First Outcomes New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA OHIO STATE UNIVERSITY SLESNICK, NATASHA Columbus, OH 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

The parent project’s Housing First initiative can be divided into two interconnected goals: (1) to reduce the likelihood of substance misuse and the development of an opioid use disorder and (2) to provide youth with housing stability and opioid and related risk prevention services that will assist them in exiting homelessness. The proposed supplement project complements the goals of the parent grant project by exploring two additional components that are related to exiting homelessness and reducing substance misuse or the development of opioid use disorder: (1) to further investigate youth’s interactions with social service providers, via qualitative methods, with the goal of cultivating a detail understanding actionable practices as it relates to fostering successful interactions between substance using homeless youth and service providers and (2) to evaluate, via quantitative methods, the extent to which ethnic identity protects youth from the negative effects of discrimination, substance misuse, and the development of a opioid use disorder.

3UG1CA189824-08S2
Developing and Implementing a Culturally Appropriate Non-Opioid Pain Coping Skills Training Intervention for Spanish-Speaking Hispanic/Latinx Patients with Cancer Pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCI WAKE FOREST UNIVERSITY HEALTH SCIENCES LESSER, GLENN J Winston-Salem, NC 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Cancer remains a leading cause of death among Hispanic/Latino populations in the United States. Compared with non-Hispanic Whites, Hispanic/Latino cancer patients are more likely to experience poor quality of life and inadequate cancer-related care, including less effective pain relief and poor patient‒provider communication. Additionally, Hispanic/Latino populations often have inadequate access to pain treatment, due to both social disparities and language barriers. However, most behavioral and psychosocial oncology research continues to focus on non-Hispanic Whites, and empirically validated and effective treatment interventions, particularly psychosocial interventions, are often not available in Spanish. This project will generate a Spanish-language version of the painTRAINER internet-based coping skills training program that is both linguistically and culturally sensitive and will evaluate its feasibility and acceptability in Hispanic/Latino patients with persistent cancer-related pain.

1R34NS126030-01
Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

3U24NS115678-01S1
Increasing Diversity and Community Engagement in EPPIC-Net Research at the University of Washington Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF WASHINGTON BACKONJA, MIROSLAV MISHA Seattle, WA 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

A main goal of the NIH HEAL Initiative and the Early Phase Pain Intervention Clinical Network (EPPIC-Net) is to improve pain management by discovering and validating biomarkers and non-opioid pain medications. This award will leverage the resources at the University of Washington’s EPPIC-Net’s Specialized Clinical Centers by implementing and evaluating strategies to improve the engagement, recruitment, and retention of individuals from underserved racial/ethnic minority populations to participate in EPPIC-Net clinical trials. The site’s network spans multiple states and specialties, allowing access to geographically and demographically diverse patient populations, including underrepresented and underserved populations. 

1R41NS118992-01
Development of selective calpain-1 inhibitors for chronic pain Cross-Cutting Research Small Business Programs NINDS 1910 GENETICS, INC. NWANKWO, JENNIFER Cambridge, MA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

The need to develop non-opioid therapeutics for chronic pain is greater than ever.  One option being explored is inhibiting the activity of calpains – enzymes that have been shown to cause pain in animal models of chronic pain.  Using an artificial intelligence (AI)-driven drug discovery platform, researchers have uncovered and validated four calpain-1 inhibitors using biochemical assays.  This study by 1910 Genetics Inc. hopes to synthesize multiple analogs of its most potent discovered calpain-1 inhibitor and determine its effectiveness against calpain-2 and certain enzymes that break down proteins.  Findings that successfully significantly inhibit calpain-1 in at least one animal model of chronic pain could lead to the first oral, central nervous system penetrating selective calpain-1 inhibitor [non-opioid therapeutic] for chronic pain.

3U19AR076725-01S3
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH SOWA, GWENDOLYN A Pittsburgh, PA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Identifying optimal chronic low back pain treatments on a patient-specific basis is an important and unresolved challenge. Tailoring interventions according to patient movement characteristics is one option. This research is characterizing patients based on spinal motion during functional tasks and daily activities and will use artificial intelligence to objectively characterize motions of the spine during both clinical assessments and day-to-day life. During clinical assessments, participants will be asked to perform functional tasks while wearing motion sensors. Data collected from the sensors will be used to identify tasks of interest, such as activities of daily living and aberrant/painful motions. An artificial intelligence approach will then interpret data collected continuously during assessment in patients’ homes over a 7-day testing period. Ultimately, this data could be used to help clinicians tailor treatments that are responsive to a patient’s real-world functional impairments.

3UH3AR077360-03S1
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIAMS JOHNS HOPKINS UNIVERSITY CAMPBELL, CLAUDIA MICHELLE (contact); CASTILLO, RENAN C; COHEN, STEVEN P Baltimore, MD 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Knee osteoarthritis is one of the leading causes of disability worldwide, particularly among older adults. Despite multiple guidelines for care, most patients do not receive adequate treatment, and about 30% are prescribed long-term opioids. This award will be used to recruit and support an early career faculty member from a group underrepresented in biomedicine. This research, part of the Pain Management Effectiveness Research Network will evaluate conservative and more aggressive treatments for knee osteoarthritis and determine which individual-level factors contribute to treatment outcomes.

3U24NS112873-03S2
Clinical Coordinating Center for the Acute to Chronic Pain Signatures Program: Administrative Supplement Clinical Research in Pain Management Acute to Chronic Pain Signatures Program NINDS UNIVERSITY OF IOWA SLUKA, KATHLEEN A Iowa City, IA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed) 
NOFO Number: NOT-NS-21-048
Summary:

The Acute to Chronic Pain Signatures (A2CPS) Program aims to identify combinations of biomarkers that predict susceptibility or resilience to the development of chronic pain. This career enhancement award will help a promising postdoctoral trainee gain access to tools and develop skills needed to pursue a career in clinical pain research. The research involves conducting collaborative multi-site cohort studies and analyzing A2CPS data to determine if a combination of metabolic and psychosocial biomarkers can be used to explain pre-surgery differences in pain, function, and disability in patients with severe knee osteoarthritis.

1UG3NS123965-01
Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CENTREXION THERAPEUTICS CORPORATION CAMPBELL, JAMES N Boston, MA 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Patients with severe, intractable chronic pain primarily receive treatment with opioids, and non-opioid treatment options are urgently needed. These patients may be candidates for treatment using other types of pain medications administered via intrathecal injection—that is, injection directly into the fluid-filled space between the membranes surrounding the brain and spinal cord. Intrathecal injection requires much lower medication doses than systemic administration. Centrexion Therapeutics Corporation seeks to develop CNTX-3100, a highly selective and highly potent novel small molecule that activates the nociception receptor (NOPr), for intrathecal administration using a pump approved by the U.S. Food and Drug Administration. In animal studies, such NOPr agonists had powerful analgesic effects when delivered directly to the spinal cord by intrathecal administration. CNTX-3100 has ideal properties for intrathecal delivery and in animal studies provided pain relief and a safety profile that was superior to intrathecally administered morphine. This project will scale up the drug, develop a formulation that ensures a stable product for intrathecal delivery, and conduct preclinical toxicity studies to prepare for a Phase 1 clinical trial.

1R43NS124421-01A1
Development of Nav1.7 Monoclonal Antibodies for Treating Pain Cross-Cutting Research Small Business Programs NINDS INTEGRAL MOLECULAR RUCKER, JOSEPH BENJAMIN Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Many current pain relief treatments rely on use of opioid drugs. This research is conducting preclinical development on a non-addictive, non-opioid therapeutic that uses antibodies to target the sodium channel Nav1.7. This channel is known to be one of the primary routes for generating pain signals – thus it is a target for reducing pain. The antibody approach offers potential for greater specificity than small molecule approaches, potentially resulting in fewer side effects.

1R43NS119087-01A1
Evaluating the Blood-Brain Barrier Bioavailability and in vivo Efficacy Potential of a Novel TAK1 Inhibitor Targeting Chronic Pain Cross-Cutting Research Small Business Programs NINDS EYDIS BIO, INC. SCARNEO, SCOTT (contact); HAYSTEAD, TIMOTHY A Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

Over-the-counter medicines such as non-steroidal anti-inflammatory drugs are ineffective for treating severe chronic pain and may have serious side effects from continued use, which limits treatment options. A kinase (an enzyme whose activity targets a specific molecule) called TAK1 is involved in the chronic pain process. This research will develop a molecule previously shown to be effective in a model of inflammatory pain that also inhibits TAK1. A main goal will be to determine if this inhibitor (takinib analog HS-276) can cross the blood-brain barrier and, if successful, pursue FDA  Investigative New Drug-enabling safety studies leading to a Phase I clinical trial and a potential new chronic pain treatment.

3UG3DA048502-01A1S2
Non-invasive vagal nerve stimulation in opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA EMORY UNIVERSITY BREMNER, JAMES DOUGLAS Atlanta, GA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research will expand the understanding of the effects of non-invasive vagal nerve stimulation on patients with opioid use disorder by examining the relationship between nerve stimulation and treatment, respiratory physiology, withdrawal symptoms, and relapse. Additionally, these relationships will be added to existing algorithms and equipment being developed by the Inan Research Lab at the Georgia Institute of Technology. Collecting and determining the quality of conventional respiration signals, as well as collecting high-resolution impedance based respiratory measurements, will help to determine the impact of non-invasive vagal nerve stimulation on breathing and lung function in people with opioid use disorder, toward development of a profile of physiological effects of non-invasive vagal nerve stimulation during opioid withdrawal.